A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice.

نویسندگان

  • Takako Niikura
  • Elkhansa Sidahmed
  • Chiho Hirata-Fukae
  • Paul S Aisen
  • Yasuji Matsuoka
چکیده

Humanin (HN), a 24-residue peptide, was identified as a novel neuroprotective factor and shows anti-cell death activity against a wide spectrum of Alzheimer's disease (AD)-related cytotoxicities, including exposure to amyloid beta (Abeta), in vitro. We previously demonstrated that the injection of S14G-HN, a highly potent HN derivative, into brain ameliorated memory loss in an Abeta-injection mouse model. To fully understand HN's functions under AD-associated pathological conditions, we examined the effect of S14G-HN on triple transgenic mice harboring APP(swe), tau(P310L), and PS-1(M146V) that show the age-dependent development of multiple pathologies relating to AD. After 3 months of intranasal treatment, behavioral analyses showed that S14G-HN ameliorated cognitive impairment in male mice. Moreover, ELISA and immunohistochemical analyses showed that Abeta levels in brains were markedly lower in S14G-HN-treated male and female mice than in vehicle control mice. We also found the expression level of neprilysin, an Abeta degrading enzyme, in the outer molecular layer of hippocampal formation was increased in S14G-HN-treated mouse brains. NEP activity was also elevated by S14G-HN treatment in vitro. These findings suggest that decreased Abeta level in these mice is at least partly attributed to S14G-HN-induced increase of neprilysin level. Although HN was identified as an anti-neuronal death factor, these results indicate that HN may also have a therapeutic effect on amyloid accumulation in AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secreted calmodulin-like skin protein ameliorates scopolamine-induced memory impairment.

Humanin, a short bioactive peptide, inhibits cell death in a variety of cell-based death models through Humanin receptors in vitro. In vivo, Humanin ameliorates both muscarinic receptor antagonist-induced memory impairment in normal mice and memory impairment in Alzheimer's disease (AD)-relevant mouse models including aged transgenic mice expressing a familial AD-linked gene. Recently, calmodul...

متن کامل

Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles.

Increasing evidence points to soluble assemblies of aggregating proteins as a major mediator of neuronal and synaptic dysfunction. In Alzheimer disease (AD), soluble amyloid-beta (Abeta) appears to be a key factor in inducing synaptic and cognitive abnormalities. Here we report the novel finding that soluble tau also plays a role in the cognitive decline in the presence of concomitant Abeta pat...

متن کامل

AM281, Cannabinoid Antagonist/Inverse agonist, Ameliorates Scopolamine-Induced Cognitive Deficit

Objective(s) Cannabinoids have been implicated in memory deficit. We examined the effect of AM281, cannabinoid antagonist/inverse agonist in prevention of scopolamine-induced cognitive deficit. Materials and Methods  Object recognition task was used to evaluate memory in mice. Exploration time in the first and the second trial was recorded. The differences in exploration between a previously...

متن کامل

Citalopram Ameliorates Impairments in Spatial Memory and Synaptic Plasticity in Female 3xTgAD Mice

Alzheimer's disease (AD) is the primary cause of dementia. There is no effective treatment. Amyloid-β peptide (Aβ) plays an important role in the pathogenesis and thus strategies suppressing Aβ production and accumulation seem promising. Citalopram is an antidepressant drug and can decrease Aβ production and amyloid plaques in transgenic mice of AD and humans. Whether citalopram can ameliorate ...

متن کامل

Data on amyloid precursor protein accumulation, spontaneous physical activity, and motor learning after traumatic brain injury in the triple-transgenic mouse model of Alzheimer׳s disease

This data article contains supporting information regarding the research article entitled "Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease" (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016) [1]. Triple-transgenic (3×Tg)-Alzheimer׳s disease (AD) model mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2011